統計・多変量解析と ソフトコンピューティング

第10章 多群の場合の当分散性の検定

本稿掲載のWebページ

 $http://mybook-pub\text{-}site.sakura.ne.jp/Statistics_Multivariate/index.html\\$

古橋 武

第10章

多群の場合の等分散性の検定

第8章,第9章の多重比較法では,8.3節のゲイムズ・ハウウェルの方法を除けば全て母 分散が等しいことを前提としていた。したがって,これらの検定を適用する前に母分散 が等しいとみなせるかどうかを検定しなければならない。

10.1 等分散性の検定(データ数が等しい場合)

10.1.1 ハートレーの方法による検定の例

8.1.1 項と同じ検定の課題に対して等分散性の検定を行う. 検定の仮説は、データ群 i の母分散を σ_i とすると

帰無仮説 : $\sigma_i = \sigma_j$

対立仮説 : $\sigma_i \neq \sigma_j$

ただし,
$$i, j = 1, 2, 3, i \neq j$$
 (10.1)

である.

データ群iのデータ数を n_i とすると、この検定では $n_1=n_2=n_3=n$ としている。データ群数が等しい場合の等分散性の検定法にハートレー (Hartley) の方法がある。データ群iの不偏分散を v_{ei}^2 とすると、検定統計量

$$f_{ij} = \frac{v_{ei}^2}{v_{ej}^2} \quad (i, j = 1, 2, 3, i \neq j)$$
 (10.2)

が自由度n-1,n-1のF分布に従うことを利用する.

ここで f_{ij} の最大値 f_{max} を

$$f_{max} = \frac{\max_{i} \{v_{ei}^{2}\}}{\min_{j} \{v_{ej}^{2}\}}$$
 (10.3)

とすると、ハートレーの方法では f_{max} に対する閾値 f_0 が数表により与えられている.公称の有意水準 $\alpha=0.05$ のとき、表 A.12 のハートレーの方法の 5% 点を利用する.この f_{ii} の最大値という事象を本書では F_{max} と表す.

図 10.1 に実施例を示す. セル C4 には閾値 f_0 が入力されている. 数表より設定数 a=3, 自由度 $\nu=n-1=8$ のとき $f_0=6.00$ と読める. セル B24 では f_{max} の値を出力している. f_{max} の値は閾値 f_0 より小さく帰無仮説: $\sigma_1=\sigma_2=\sigma_3$ を棄却できない.

	Α	В	С	D
1	等分散性			
2	43 23 BX 11	**************************************	V) / / / / /	
3	入力	公称の有意水準α	閾値f0	
4		0.05	6	
5				
6		設定1	設定2	設定3
7		3.3	3.2	3.1
8		3.2	3.1	3.0
9		3.4	3.3	3.3
10		3.3	3.2	3.1
11		3.3	3.2	3.2
12		3.2	3.1	3.3
13		3.5	3.4	3.0
14		3.2	3.2	3.1
15		3.5	3.0	3.1
16				
17	計算値	設定数a	データ数 n	自由度ル
18		3	9	8
19		不偏分散ve1^2	ve2^2	ve3^2
20		0.0144	0.0136	0.0125
21		vmax	vmin	
22		0.0144	0.0125	
23	出力	fmax		
24		1.156		

図 10.1: 等分散性の検定の例(ハートレーの方法)(ハートレーによる検定.xlsx)

(略)

10.1.2 ハートレーの方法によるシミュレーション

(略)

10.1.3 ハートレーの検定の理論

互いに独立な事象 X_1, X_2, X_3 はそれぞれ平均 μ_1, μ_2, μ_3 , 分散 $\sigma_1^2, \sigma_2^2, \sigma_3^2$ の正規分布に従うとする. すなわち, $X_1 \sim N(\mu_1, \sigma_1^2), X_2 \sim N(\mu_2, \sigma_2^2), X_3 \sim N(\mu_3, \sigma_3^2)$ である. また, 各群のデータ数 n_1, n_2, n_3 は同じとする $(n_1 = n_2 = n_3 = n)$. 事象 X_1, X_2, X_3 のデータ群の平均値をそれぞれ $\overline{x}_1, \overline{x}_2, \overline{x}_3$, 不偏分散を $v_{e1}^2, v_{e2}^2, v_{e3}^2$ とすると, データ群 $i, j(i, j = 1, 2, 3, i \neq j)$

の不偏分散の比 f_{ij} は

$$f_{ij} = \frac{v_{ei}^2}{v_{ej}^2} \tag{10.4}$$

となる. f_{ij} は次の等分散の仮説の下で、式 (??) より自由度 n-1, n-1 の F 分布に従う. 検定の仮説は、

帰無仮説 : $\sigma_i = \sigma_j$

対立仮説 : $\sigma_i \neq \sigma_j$

ただし,
$$i, j = 1, 2, 3, i \neq j$$
 (10.5)

である.

(以下略)

10.2 等分散性の検定(データ数が異なる場合)

前節のハートレーの方法の理論はデータ数を等しいとして導出していた.したがって、各データ群でデータ数が異なる場合には検定の結果は保証されない.各群のデータ数が異なる場合の検定法にバートレット(Bartlett)の方法がある.

10.2.1 バートレットの方法による検定の例

8.2.1 項と同じ検定の課題に対して等分散性の検定を行う. 検定の仮説は、データ群iの母分散を σ_i^2 とすると

帰無仮説 :
$$\sigma_i^2 = \sigma_0^2$$
, $\forall i$ 対立仮説 : $\sigma_i^2 \neq \sigma_0^2$, $\exists i$ (10.23)

である.帰無仮説は全ての母分散が σ_0^2 に等しいとし,対立仮説は,母分散が σ_0^2 に等しくないデータ群があるとする.データ群数をa,データ群i のデータ数を n_i .不偏分散を v_{ei}^2 とすると,検定統計量B が次式で与えられる.

$$B = \frac{2 \log L}{1 + \frac{1}{3(a-1)} \left(\sum_{i=1}^{a} \frac{1}{n_i - 1} - \frac{1}{\nu} \right)}$$
 (10.24)

ただし,

$$2\log L = \nu \left\{ \log \frac{\sum_{i=1}^{a} (n_i - 1) v_{ei}^2}{\nu} - \frac{1}{\nu} \sum_{i=1}^{a} (n_i - 1) \log v_{ei}^2 \right\}$$
 (10.25)

$$\nu = \sum_{i=1}^{a} (n_i - 1) \tag{10.26}$$

である. $\log x$ の底は e である. B が自由度 a-1 の χ^2 分布に従うことを利用する.

図 10.8 に実施例を示す.セル C26 には自由度 a-1=2 における閾値 B_0 が CHIINV() 関数を用いて求められている.セル B28 の検定統計量 B の値は閾値 B_0 より小さく帰無仮説: $\sigma_1^2=\sigma_2^2=\sigma_3^2=\sigma_0^2$ を棄却できない.

	Α	В	С	D
1	等分散性			
2				
3	入力	公称の有意水準α		
4		0.05		
5				
6		設定1	設定2	設定3
7		3.3	3.2	3.1
8		3.2	3.1	3.0
9		3.4	3.3	3.3
10		3.3	3.2	3.1
11		3.3	3.2	3.2
12		3.2	3.1	3.0
13		3.5	3.4	3.2
14		3.2	3.0	
15		3.2	3.2	
16		3.4		
17		3.5		
18				
19	計算値	設定数 a	自由度ν	
20		3	24	
21		データ数 n1	データ数 n2	データ数 n3
22		11	9	7
23		不偏分散ve1^2	ve2^2	ve3^2
24		0.0136	0.0136	0.0124
25		検定統計量 2InL	閾値B0	
26		0.020	5.991	
27	出力	検定統計量 B	<	
28		0.019	=CHIIN	$VV(\alpha, a-1)$

図 10.8: 等分散性の検定の例(バートレットの方法)(バートレットによる検定.xlsx)

10.2.2 バートレットの方法によるシミュレーション

(略)

図 10.11 は,1000 組のシミュレーションにおける各組の B 値の頻度分布を示す.B 値の小数点以下を切り捨てて,各整数値の出現割合を示してある.参考に自由度 2 の χ^2 分布に基づく確率分布を併せて示す.シミュレーションを再実行すると B 値の頻度が理論値の周りで変化する様子を見て取ることができる.

(略)

10.2.3 バートレットの検定の理論

(以下略)

著者

古橋 武

名古屋大学工学研究科計算理工学専攻

本稿の内容は,

古橋武・宮本定明著

「統計・多変量解析とソフトコンピューティング 一超多自由度系解析を目指して一」

金田·笹井監修, 計算科学講座 第3巻, 共立出版, 2012

http://www.kyoritsu-pub.co.jp/bookdetail/9784320122680

から抜粋したものです. 共立出版社の許可を得て Web ページに掲載しています. 著作権 法上で認められている例外を除き, 出版社の許可なく複写することはできません.